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ABSTRACT: Melt index (MI) is a crucial indicator in
determining the product specifications and grades of poly-
propylene (PP). The prediction of MI, which is important
in quality control of the PP polymerization process, is stud-
ied in this work. Based on RBF (radial basis function) neu-
ral network, a soft-sensor model (RBF model) of the PP
process is developed to infer the MI of PP from a bunch of
process variables. Considering that the PP process is too
complicated for the RBF neural network with a general set
of parameters, a new ant colony optimization (ACO) algo-
rithm, N-ACO, and its adaptive version, A-N-ACO, which
aim at continuous optimizing problems are proposed to
optimize the structure parameters of the RBF neural net-

work, respectively, and the structure-best models, N-ACO-
RBF model and A-N-ACO-RBF model for the MI prediction
of propylene polymerization process, are presented then.
Based on the data from a real PP production plant, a
detailed comparison research among the models is carried
out. The research results confirm the prediction accuracy of
the models and also prove the effectiveness of proposed N-
ACO and A-N-ACO optimization approaches in solving
continuous optimizing problem. VC 2010 Wiley Periodicals, Inc.
J Appl Polym Sci 119: 3093–3100, 2011
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INTRODUCTION

Production of polypropylene (PP) is a multibillion
business, which has great influences on the world in
the aspects of industry, military, economy, and so
on. Melt index (MI) of PP produced, which is
defined as the mass rate of extrusion flow through a
specified capillary under prescribed condition of
temperature and pressure,1 is the most important
parameter in determining the product’s grade and
quality control of practical industrial process. But it
is usually measured offline in the laboratory with an
analytical procedure, which is not only costly but
also time consuming, leading to off-specification
products and resulting in enormous losses in profit.

An MI online estimation model is thereby very use-
ful both as an online sensor and as a forecasting
system.
Because MI is difficult to be measured directly, it

is common to figure it out through an indirect
method. Clearly, there are some certain relationship
between the MI and some other easily measured
variables, and the relationship can be used to de-
velop the MI prediction model. To infer the difficult-
measured variable from easy-measured variables,
the chemical and physical relationships can be used;
thus, an online analyzer can be constructed with the
mechanism of polymerization process. However, the
approach2–6 is a big challenge because of the engi-
neering activity and the relatively high complexity
of kinetic behavior and operation of polymer plants
as shown in Figure 1. The chemical and physical
reactions in the reactors are so complicated that it is
very difficult to model the reactors or the reaction
processes happen in the reactors.7,8 Even simplified
mechanical models need to be developed with great
effort to fit the inner relationship between MI and
some of the factors in the reaction.9–11

To avoid the hardness of developing mechanism
model, the empirical models based on data, and sta-
tistics provide an alternative to estimate the MI from
the easy-measured variables without considering the
complex chemical or physical reactions. Some pro-
duction plants have used statistical methodologies to

Correspondence to: X. Liu (liuxg@iipc.zju.edu.cn).
Contract grant sponsor: National Natural Science

Foundation of China; contract grant number: 50876093.
Contract grant sponsor: International Cooperation and

Exchange Project of Science and Technology Department
of Zhejiang Province; contract grant number: 2009C34008.

Contract grant sponsor: National High Technology
Research and Development Program 863; contract grant
number: 2006AA05Z226.

Contract grant sponsor: Science Fund for Distinguished
Young Scholars of Zhejiang University; contract grant
number: 581645.

Journal ofAppliedPolymerScience,Vol. 119, 3093–3100 (2011)
VC 2010 Wiley Periodicals, Inc.



provide information for product and process design,
monitoring, and control,12–15 and, some researchers
have strived to obtain easy empirical models
through various methods. Han16 used three different
approaches, which are supported vector machines
(SVM), partial least squares, and artificial neural net-
works, for MI estimation of SAN (styrene-acryloni-
trile) and PP process. Shi17,18 developed soft-sensor
model for MI prediction based on weighted least
squares support vector machines (LS-SVM) and in-
dependent component analysis, multiscale analysis
and RBF. Neural networks have been widely applied
to data-based model and control dynamic processes
because of their extremely powerful adaptive capa-
bilities in response to nonlinear behaviors.19,20 Thus,
Zhang21 sequentially trained a set of neural net-
works, based on which the novel bootstrap aggre-
gated neural networks are formed, and he obtained
quite a good performance in the inferential estima-
tion of the polymer MI in an industrial plant with
the model developed by the aggregated neural net-
works. These works give good prediction, but
greater performance and better universality of the
estimation model are still the first-line goal in aca-
demic and industrial community.

In this work, the RBF neural network is used to fit
the relationship between MI and a group of other eas-
ily obtained process variables in propylene polymer-
ization, and then the MI prediction model, which can
infer the MI of PP product from the batch of variables
above, is developed. The key determining the RBF
neural network’s adaptive capability in response to
the nonlinear relationship between MI and the cho-
sen group of variables is the structure of the network,
such as weights, centers, and bias. A general set of
structure parameters do not guarantee the neural net-
work to achieve the desired performance in the high
complicated and nonlinear propylene polymerization
process. Therefore, an optimization of the neural net-
work’s structure parameters is necessary, and the
work is carried out to improve the performance of
the RBF neural network in MI prediction here.

In published literature, lots of stochastic algo-
rithms have been proposed to handle various aca-

demic and application optimizing problems like the
one mentioned earlier. particle swarm optimization,
ant colony optimization (ACO), genetic algorithm
(GA), and simulated annealing are examples of
some popular intelligent algorithms. Among these
algorithms, ACO is a novel nature-inspired heuristic
method for the solution of combination problems,
which only involves various basic mathematic oper-
ations and just needs the value of objective function
exports without gradient information. It shows great
search capacity for optimum and thus is used here
to optimize the structure parameters of RBF neural
network. The parameters to be optimized here are
continuous values, but traditional ACO approach to
handle this problem is discrete the continuous prob-
lem, which results in the lack of accuracy for the so-
lution it obtains. Hence, a novel ACO algorithm, N-
ACO algorithm, which is designed for continuous
optimizing problem, is proposed to optimize the
structure of the RBF neural network and the struc-
ture-best neural network for the MI prediction
model, N-ACO-RBF model, is obtained. Considering
that a defect lies in the N-ACO algorithm, an adapt-
ive N-ACO, A-N-ACO, is further proposed, and an
A-N-ACO-RBF model is thereby further developed.
So far, there is little published work on how to

optimize the RBF neural network with intelligent sto-
chastic algorithms for the prediction of PP MI. Here,
an innovational trial based on the thought is carried
out, and, finally, the newly MI prediction models, N-
ACO-RBF model and A-N-ACO-RBF model for PP
polymerization process are achieved. The perform-
ance of the proposed models is illustrated and eval-
uated based on some real industrial processing data.
The results obtained are then discussed, and con-
cluding remarks about the design are presented.

RBF NEURAL NETWORK AND ACO
ALGORITHMS

RBF neural network

The RBF neural network is the primary choice for
process product quality prediction most times,

Figure 1 General scheme of propylene polymerization.
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because any of the industrial processes is charac-
terized by strong nonlinear and correlated rela-
tionships, whereas the RBF neural network pro-
vides great global approximation and convergence
in fitting these complex relationships.22,23 It is a
typical feed-forward network, which takes a struc-
ture of three layers: the input layer, the hidden
layer, and the output layer. The input layer col-
lects the input information and formulates the
input vector x. The hidden layer is composed by L
hidden nodes, which apply nonlinear transforma-
tions to the input vector. The output layer gives
the final responses. The RBF neural network can
be considered as a mapping in Euclidean space: T
: Rr ! Rs. Let xp 2 Rr be the input vector and
ci 2 Rrði ¼ 1; 2;:::; kÞ be the center. The output is
formed by a linear combination of the hidden
layer responses, given by

yjðxpÞ ¼
Xk

i¼1
wjiUi

ð xp � ci
�� ��Þ; j ¼ 1; 2;:::; s (1)

where k�k is the Euclidean distance, k is number of
the hidden layer nodes, Ui(�) is hidden layer node
response, wji is the output weight, xp is the input
vector, yj is the output of jth output node, and s is
the number of the output nodes. In the current
model, a hidden layer node uses the Gaussian
activation function to make a response, that is

Uið xp � ci
�� ��Þ ¼ exp �ð xp � ci

�� ��Þ2
2ri

 !
; i ¼ 1; 2;:::; k (2)

where ci and ri are the center and the width of
the ith node in the hidden layer respectively. In
this work, the center ci is obtained by the orthogo-
nal least square algorithm,24 and the width ri is
determined by experience and they determine the
receptive field around the node.

Basic ACO algorithm

Ant colony optimization (ACO) algorithms are some
kind of heuristic search techniques, which are
inspired by the foraging mechanism of a real ant
system and especially by the ability of the ants to
figure out the shortest path between their nests and
the food source.25 When searching for food, ants
track a volatile chemical pheromone, which is
released by ants, to choose the paths to head, and
they prefer the paths marked by high-pheromone
concentration. In this way, ants can communicate
with one another through an indirect mechanism
based on the modification of pheromone concentra-
tion by the physical environment and the ant
individuals.

At the beginning of the search process, there is no
pheromone, and ants choose their paths randomly,
releasing pheromone along the followed path. After a
while, some paths between nests and food source are
figured out, and the shorter ones take high-phero-
mone concentration, because walking through a
shorter path costs less time and during a certain pe-
riod of time more ants will have passed this shorter
path and left more pheromone. However, ants take
the possibility to abandon the high-pheromone con-
centration path and head to other paths, which will
result in the discovery of better and new paths. In the
long run, with the presence of many pheromone trails,
ants’ pheromone-driven behavior makes the strong
concentration path the most promising one and thus
forms a positive-feed-back process to converge to the
shortest path between nests and food source.26

ACO algorithm simulates the foraging process of
ant system and was first mathematically proposed in
early 1990s by Dorigo.27 ACO requires a problem to
be represented as a graph consisting of several
nodes and edges, and these edges can be formed to
a route, which represents a solution to the prob-
lem.28,29 Let ai(t) be the number of ants in node ni at
time t, sij(t) is the pheromone concentration in the
edge eij between node ni and nj at time t, n is the
total number of the nodes, and m is the total number
of ants. N is the set of nodes and E is the set of
edges. C ¼ fsijðtÞjeij 2 Eg is the set of pheromone
concentration of all the edge at time t. ACO search
for the best path consisting of several edges accord-
ing to the following steps:
Step 1. Initialize the graph by setting sij(t) to a

constant sij(0) and deciding a group of integers ai(0)
satisfying with: m ¼P aið0Þ and ni here have ai(0)
ants in must be an admissible starting node. Also
initialize the sequence number of iteration: k ¼ 1.
Step 2. Initialize the sequence number of ant: b ¼ 1.
Step 3. For ant b, choose a sequence of edges to

form a route rb(k), which can represent a solution to
the optimizing problem. pbij (k) expresses the proba-
bility for ant b to choose the edge eij from node i in
iteration k, and it is given by

pbijðkÞ ¼
sijðkÞP

s�allowedb
sisðkÞ ; if j 2 allowedb

0; if j =2 allowedb

8><
>: (3)

The expression allowedk indicates the admissible
edges from node i for ant b.
Step 4. Calculate the fitness Lb(k) of the route rb(k)

according to the objective function of the optimizing
problem.
Step 5. b ¼ b þ 1, if b > m go to Step 6; else, go

back to Step 3.
Step 6. Update the pheromone concentration of all

the edges in the graph according to the following
rule:
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sijðkþ 1Þ ¼ ð1� qÞsijðkÞ þ DsijðkÞ (4)

where q(0 � q � 1) is a coefficient of pheromone
evaporation, Dsij(k) is the total adjustment of phero-
mone concentration on edge eij, which is obtained by

DsijðkÞ ¼
Xm
b¼1

DsbijðkÞ (5)

DsbijðkÞ ¼
LbðkÞ
Q ; if eij 2 rbðkÞ
0; if eij=2rbðkÞ

(
(6)

where m is the total number of ants, Dsbij (k) is the
adjustment resulted by the completing of route rb(k)
of ant b in iteration k, and Q is an adjustable
parameter.

Step 7. k ¼ k þ 1, if k > itermax, go to Step 8; else,
go back to Step 2. Here, itermax is the given max
number of iteration.

Step 8. Choose the route with the best fitness that
has been searched so far as the final solution to the
optimizing problem.

New ACO algorithm (N-ACO)

As introduced earlier, basic ACO requires the prob-
lem to be presented as a discrete one.30 Thus, when
coming to a continuous optimizing problem, the so-
lution space should be cut into a grid space first.
Take a D-dimensional problem for example, the ith
dimension should be a real number in the zone
[mini, maxi], then, in ACO, the zone is cut into sev-
eral intervals, and every interval is represented as a
node. An ant choosing a node means choosing a ran-
dom number in the specific interval. This method of
handling the continuous problem cannot assure the
accuracy of solution, because the zone that has been
cut can be a very large interval and a node is
mapped to a big interval while ACO only chooses a
random number in this interval. To get accurate so-
lution, the zone should be transferred to many more
intervals, which will result in a time-consuming sit-
uation in ACO search.

Here, a new ACO algorithm (N-ACO), which is
designed for continuous optimizing problems, is
presented. A solution is not represented as a route
consisting of several nodes, but just one node that is
vector. The nodes represent food sources with cer-
tain pheromone concentrations, which are related to
the quantity of food in these sources. The ants’
objective is to find out the food source with most
quantity of food. An ant starts searching with choos-
ing a food source by a pheromone concentration-
related probability and tries to search around the
food source it has chosen to find a more attractive

food source. If a better food source, which means it
contains more food than the original source does, is
obtained, the ant gets excited, and releases more
pheromone according to the quantity of the food
found. From mathematical point of view, food
source is a solution to the optimizing problem, and
the quantity of food in the source is the fitness of
the solution. Ants tend to search around good food
sources to find out even better sources, and it means
that the algorithm is inclined to look for better solu-
tions of the problem around the existing solutions
with high fitness. It is the mechanism of the ants’
‘‘local search,’’ which will be introduced later.
Sometimes, the food quantity in some sources is

small and, at the same time, starting from these
points, ants cannot find out better food sources than
the original ones. Then, these food sources should be
replaced with some others, which are more potential
to have wonderful food sources around. To form the
new food sources, the replaced ones are used to
make combinations, where the ideas of mutation and
cross basically used in GA algorithm are used.31 The
thinking above is the ants’ ‘‘global search’’ and the
details will be explained subsequently.
The N-ACO algorithm is carried out as follows:
Step 1. Prepare for the algorithm:
1.1. Initialize the searching space by giving the

total number of ants m and a series of initial food
sources S ¼ (s1, s2,. . .,sn). A food source si ¼ (x1,
x2,. . .xD) (i ¼ 1, 2,. . .n) represents a solution to the D-
dimension continuous optimizing problem and n is
the total number of starting points that ants will
search around.
1.2. Calculate and record the fitness of (si ¼ 1,

2,. . .n) as (Fi ¼ 1, 2,. . .,n).
1.3. Initialize the sequence number of iteration k¼ 1.
1.4. Specify the parameters of global search: R1

and R2. Here, R1 is the number of sources that
should be replaced by the new ones created with
mutation operation, and R2 is the number of sources
that should be replaced by the new ones created
with cross operation.
Step 2. Initialize the sequence number of ant j ¼ 1

and do the local search:
2.1. Calculate the probability for choosing the

source (si ¼ 1, 2,. . .,n) by:

PiðkÞ ¼ FiPn
i¼1 Fi

ði ¼ 1; 2;:::; nÞ (7)

2.2. Choose a schosen by following the roulette rules
for ant j. Meanwhile, make sure that every source not
be chosen more than once during the kth iteration.
2.3. Create a distance with a direction del ¼ (d1,

d2,. . .,dD) that ant j will walk, and a new source snew
is obtained by:

snew ¼ schosen þ del (8)
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Calculate the fitness of snew and save as Fnew, if
Fnew > Fchosen, snew will be accept and replace schosen
in the set S. Fchosen in the set Fi(i ¼ 1,2,. . .,n) is also
updated. Else, if Fnew � Fchosen, do nothing.

2.4. j ¼ j þ 1; if j > m, go to Step 3; else go back
to 2.1.

Step 3. In Step 2, local search has updated the set
S as well as Fi(i ¼ 1,2,. . .,n), and here the global
search is processed:

3.1. Choose the sources to be replaced by follow-
ing the roulette rules. The probability for source si(i
¼ 1,2,. . .,n) to be chosen is given by:

QiðkÞ ¼
1=FiPn
i¼1

1=Fi

ði ¼ 1; 2; :::; nÞ (9)

The total number of sources to be chosen is R1 þ
R2.

3.2. For the first R1 sources to be replaced with
mutation operation, let each initial source sold shift a
random distance in a random direction del ¼ (d1,
d2,. . .,dD) to form a new source snew:

snew ¼ sold þ del (10)

Replace the chosen R1 sources with the new ones.
3.3. For the left R2 sources to be replaced with

cross operation, let the initial source sold cross with a
random source srandom in S to get a new one snew:

snew ¼ p � sold þ ð1� pÞ � srandom (11)

where p is a probability parameter that can be
adjusted.

Replace the chosen R2 sources with the new ones.
Step 4. k ¼ k þ 1; if k > itermax, go to Step 5; else

go back to Step 2.
Step 5. Take the source sbet with best fitness Fbest

to be the final solution of the optimizing problem.

Adaptive N-ACO algorithm

Although the N-ACO has greatly improved the
effectiveness and the capacity of basic ACO in han-
dling continuous optimizing problems, there is a
vital defect lies in Step 2 (substep 2.3), which largely
influences the convergence of the N-ACO algorithm
and the reason is simple. When proceed local search
according to this strategy, there are no certain direc-
tions and distances leading the ants to better food
sources, but all random created distances in random
directions. It results the difficulty for ants to find out
the better sources, and in the anaphase of the N-
ACO, ants can hardly get the exact optimum of the
problem around the local best solutions, which
means a poor convergence of the N-ACO.

In basic ACO algorithm, there are lots of adapt-
ive ways32–34 to improve its performance, but here
for the N-ACO, they can hardly be used. Instead,
based on the following three ideas, an adaptive
modification of the N-ACO is proposed to over-
come the defect mentioned earlier. First, an ant will
not just try once around a chosen source, but sev-
eral times to make full use of the experience it
obtains from formal tries. Second, when an ant
finds a better source with a distance in a direction,
it moves in the same direction with the same dis-
tance in its next try, regarding this distance in the
direction as a heuristic one. Third, if an ant fails in
any try, the direction changes and the distance is
decreased according to its number of tries. At the
same time, the distance also decreases according to
the iteration number, which contributes a lot the
convergence of the algorithm. Overview, it makes
the distance and the direction adaptive to the num-
ber of iteration and times of the ant’s try. There-
fore, the N-ACO algorithm is modified to be an
adaptive one, A-N-ACO algorithm, and its proce-
dure differs with N-ACO only in Step 2 (substep
2.3) as following:
Step 2. The same 2.1, 2.2 and 2.4 as that in N-

ACO.
2.3. Adaptive steps of A-N-ACO:

2.3.1. Initialize the number of try times for ant j
around schosen : q ¼ 1.
2.3.2. Create an iteration number related (The

larger iteration number, the smaller distance) dis-
tance with a direction del ¼ (d1, d2,. . .,dD) that the
ant j will walk, and a new source snew is obtained
by:

snew ¼ schosen þ del (12)

Calculate the fitness of snew and save as Fnew, if
Fnew > Fchosen, snew will be accept and replace schosen
to be the new starting point for the next search try
of ant j. Keep the del ¼ (d1, d2,. . .,dD) unchanged.
Else, if Fnew � Fchosen, do nothing but create a new

del ¼ (d1, d2,. . .,dD) in a different direction and with
a decreased distance.
2.3.3. q ¼ q þ 1, if q > qmax, replace the original

schosen with the finally searched source snew, updated
the related Fchosen and go to 2.4. Else, go back to
2.3.2.

RESULTS

The process considered here is a propylene poly-
merization process, which is currently operated for
commercial purposes in a real plant in China. A
highly simplified schematic diagram of this process
is illustrated in Figure 1. The process consists of a
chain of reactors in series, two continuous stirred-
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tank reactors (CSTR) and two fluidized-bed reactors
(FBR). Hydrogen is fed into each reactor, but the
catalyst and propylene are added only to the first
reactor along with the solvent. These liquids and
gases supply reactants for the growing polymer
particles and provide the heat transfer media. The
polymerization reaction takes place in a liquid
phase in the first two reactors and is completed in
vapor phase in the third and fourth reactors to pro-
duce the powdered polymer products. The MI of
the PP, which determines the quality of the prod-
uct, depends on the catalyst properties, reactant
composition, and reactor temperature. Hydrogen
regulates the molecular weight of PP.

Therefore, a pool of process information formed
by nine process variables (T, p, l, a, f1, f2, f3, f4, and
f5), which influence the process greatly, have been
chosen to develop the MI prediction model. T, p, l,
and a stand for process temperature, pressure, level
of liquid, and percentage of hydrogen in vapor
phase in the first CSTR reactor, respectively. f1, f2,
and f3 are flow rate of three streams of propylene
into the first CSTR reactor, and f4 and f5 are flow
rate of catalyst and cocatalyst into the first CSTR re-
actor. The data have been acquired from the histori-
cal log recorded in a real propylene polymerization
plant, and they are filtered to discard abnormal sit-
uations and to improve the quality of prediction
model. The input and output variables are also nor-
malized with respect to their maximum operation
values. The selection of the most suitable training
dataset among all the available process information
is one of the most important tasks in model learning.
The method to construct the training dataset here is
selecting data according to the time series of
recorded data, then RBF model, N-ACO-RBF model,
and A-N-ACO-RBF model are developed based on
the selected training dataset. All the data are sepa-
rated into training dataset, testing dataset, and gen-
eralization dataset, the latter two of which are used
to test the accuracy and the universality of the mod-
els. There are 120 points in the training dataset, 30
points in the testing dataset respectively, and the left
are all in the generalization dataset. It is noted that
the testing dataset and training dataset are from the
same batch, whereas the generalization dataset is
derived from another batch.

To see about the MI prediction accuracy of mod-
els, the difference between the output of the models
and the desired output (the analytic MI values from
laboratory) is considered as the error and repre-
sented in several ways. In this work, the following
measures are used for model evaluations: the mean
absolute error (MAE), the mean relative error
(MRE), the root of mean square error (RMSE), and
the Theil’s inequality coefficient (TIC). The error
indicators are defined as following:

MAE ¼ 1

N

XN
i¼1

yi � ŷij j (13)

MRE ¼ 1

N

XN
i¼1

yi � ŷi
yi

����
���� (14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
yi � ŷið Þ2

r
(15)

TIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 yi � ŷið Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 y
2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ŷ

2
i

q (16)

where yi and ŷi denote the measured value and pre-
dicted result, respectively.
The data listed in Table I show that the A-N-ACO-

RBF model functions best overall on the testing data-
set. In details, RBF model gives an MAE of 0.0278, an
MRE of 1.06%, a RMSE of 0.0354, and a TIC of
0.0068. For N-ACO-RBF model, an optimized RBF
model by the N-ACO algorithm, obtains an MAE of
0.0203, an MRE of 0.77%, a RMSE of 0.0261, and a
TIC of 0.0050. N-ACO-RBF model has already
obtained improved prediction accuracy than the RBF
model. However, the A-N-ACO-RBF model achieves
even better performance. The MAE, MRE, RMSE,
and TIC are 0.0115%, 0.44%, 0.0153%, and 0.0029%,
with percentage decreases of 58.63%, 58.49%, 56.78%,
and 57.35% compared to that of the RBF model,
respectively. These error indicators prove the A-N-
ACO-RBF model provides wonderful MI prediction
accuracy for the propylene polymerization process.
Figure 2 gives a more explicit illustration in how

better the A-N-ACO-RBF works than RBF model and
N-ACO-RBF model do on the testing dataset. The
curve without mark is the real MI value obtained
from analysis in laboratory, whereas the curve
marked with squares is the MI value predicted by
RBF model. The results predicted by N-ACO-RBF
model and A-N-ACO-RBF model are represented by
the curves marked with circles and crosses, respec-
tively. Obviously, the A-N-ACO-RBF model’s result is
best and nearly being the real MI value on most data
points. The N-ACO-RBF model’s prediction is better
than RBF model, but not as good as that of the A-N-
ACO-RBF model. The visual comparison proves the
great prediction accuracy of A-N-ACO-RBF model.

TABLE I
Performance of the Models on the Testing Dataset

Model MAE MRE (%) RMSE TIC

RBF 0.0278 1.06 0.0354 0.0068
N-ACO-RBF 0.0203 0.77 0.0261 0.0050
A-N-ACO-RBF 0.0115 0.44 0.0153 0.0029
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To specify the universality of the proposed MI
prediction models, models are also evaluated on the
generalization dataset. An accurate prediction of MI
on this dataset gives a strong support that the model
owns good universality.

Table II lists the specific error indexes for RBF
model N-ACO-RBF model and A-N-ACO-RBF model
when they predict on generalization dataset. Here,
A-N-ACO-RBF model cuts down the other two mod-
els again, with a decrease of 63.71% in MRE from
1.24% to 0.45%, compared to the RBF model. And
almost the same things happen in terms of MAE,
RMSE, and TIC. N_ACO-RBF model still win over
RBF model, but loose to A-N-ACO-RBF model.

At the same time, another comparison in how the
models work on generalization dataset is given in
Figure 3, which speaks even more powerfully than
the data in Table II does. Here, the curves marked
with squares, circles, and crosses are still the MI val-
ues predicted by RBF model, N-ACO-RBF model,
and A-N-ACO-RBF model, respectively, while the
analytic MI value curve is without mark. Clearly, A-
N-ACO-RBF model gives a nearly real MI value pre-
diction, much more accuracy than RBF model and
N-ACO-RBF model do. Thus, it is proved that the
A-N-ACO-RBF model holds excellent universality in
MI prediction both statistically and graphically.

Furthermore, the method proposed by Shi17 has
obtained an MAE of 0.0635 for MI prediction on test-
ing dataset. But the A-N-ACO-RBF model here
achieved an MAE of 0.0115, with an obviously huge
percentage decrease compared to the published

result. It also strongly supports the proposed
method here.

CONCLUSION

An N-ACO algorithm and its adaptive version, A-
N-ACO algorithm, which aim at continuous opti-
mizing problems in MI prediction of propylene po-
lymerization process are presented and used to
search for the optimum of the RBF neural network’s
structure parameters in this work. Then, the N-
ACO-RBF model and A-N-ACO-RBF model to esti-
mate the MI of PP from other process variables are
developed and evaluated on some data from a real
industrial plant, compared to the RBF model with-
out optimization. The RBF model has a worst per-
formance, because it predicts with a slightly big
error and the N-ACO-RBF model does much better.
However, the A-N-ACO-RBF model achieves even
better performance and predicts the MI with an
MRE of 0.44%, decreases with a percentage of
58.49% and 42.86% when compared with whose of
1.06% and 0.77% obtained from the corresponding
RBF and N-ACO-RBF models, respectively. The
results obtained indicate that the proposed A-N-
ACO-RBF model provides prediction accuracy and
reliability and supposed to have a promising out-
look in practical use.

References

1. Bafna, S. S.; Beall, A. M. J Appl Polym Sci 1997, 65, 277.
2. McAuley, K. B.; MacGregor, J. F. AIChE J 1991, 37, 825.
3. McKenna, T. F.; Soares, J. B. P. Chem Eng Sci 2001, 56, 3931.
4. Sarkar, P.; Gupta, S. K. Polym Eng Sci 1993, 33, 368.
5. Lee, E. H.; Kim, T. Y.; Yeo, Y. K. Kor J Chem Eng 2008, 25,

613.
6. Castoldi, M. T.; Pinto, J. C.; Melo, P. A. Ind Eng Chem Res

2007, 46, 1259.
7. Kanellopoulos, V.; Tsiliopoulou, E.; Dompazis, G.; Touloupides,

V.; Kiparissides, C. Ind Eng Chem Res 2007, 46, 1928.

Figure 2 Performance of the models on the testing dataset.

TABLE II
Performance of Models on the Generalization Dataset

Model MAE MRE (%) RMSE TIC

RBF 0.0326 1.24 0.0398 0.0076
N-ACO-RBF 0.0209 0.80 0.0300 0.0057
A-N-ACO-RBF 0.0118 0.45 0.0158 0.0030

Figure 3 Performance of the models on the generalization
dataset.

MI PREDICTION BY RBF NEURAL NETWORK 3099

Journal of Applied Polymer Science DOI 10.1002/app



8. Khare, N. P.; Lucas, B.; Seavey, K. C.; Liu, Y. A.; Sirohi, A.;
Ramanathan, S.; Lingard, S.; Song, Y. H.; Chen, C. C. Ind Eng
Chem Res 2004, 43, 884.

9. Azizi, H.; Ghasemi, I.; Karrabi, Q. Polym Test 2008, 27, 548.
10. Ghasemi, S. M.; Sadeghi, G. M. M. J Appl Polym Sci 2008,

108, 2988.
11. Nele, M.; Latado, A.; Pinto, J. C. Macromol Mater Eng 2006,

291, 272.
12. Ahmed, F.; Nazir, S.; Yeo, Y. K. Kor J Chem Eng 2009, 26, 14.
13. Sharmin, R.; Sundararaj, U.; Shah, S.; Griend, L. V.; Sun, Y. J

Chem Eng Sci 2006, 61, 6372.
14. Rallo, R.; Ferre-Gine, J.; Arenas, A.; Giralt, F. Comput Chem

Eng 2002, 26, 1735.
15. Kaneko, H.; Arakawa, M.; Funatsu, K. AIChE J 2009, 55, 87.
16. Han, I. S.; Han, C.; Chung, C. B. J Appl Polym Sci 2005, 95,

967.
17. Shi, J.; Liu, X. G. J Appl Polym Sci 2006, 101, 285.
18. Shi, J.; Liu, X. G. Neurocomputing 2006, 70, 280.
19. Chaudhuri, B. B.; Bhattacharya, U. Neurocomputing 2000, 34,

11.
20. Hunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P. J Auto-

matica 1992, 28, 1083.

21. Zhang, J.; Jin, Q. B.; Xu, Y. M. Chem Eng Technol 2006, 29,
442.

22. Park, J.; Sandberg, I. W. Neural Comput 1993, 5, 305.
23. Ahmad, S.; Simonovic, S. P. J Hydrol 2005, 315, 236.
24. Chen, S.; Cowan, C. F. N.; Grant, P. M. IEEE Trans Neural

Network 1991, 2, 302.
25. Li, L.; Qiao, F.; Wu, Q. D. Int J Adv Manuf Technol 2009, 44,

985.
26. Aymerich, F.; Serra, M. Compos A Appl Sci Manuf 2008, 39,

262.
27. Ho, C. K.; Ewe, H. T. Appl Artif Intell 2009, 23, 570.
28. Kanan, H. R.; Faez, K. Appl Math Comput 2008, 205, 716.
29. Kaveh, A.; Azar, B. F.; Hadidi, A.; Sorochi, F. R.; Talatahari, S.

J Constr Steel Res 2010, 66, 566.
30. Baskan, O.; Haldenbilen, S.; Ceylan, H.; Ceylan, H. Appl Math

Comput 2009, 211, 75.
31. Lee, Z. J.; Su, S. F.; Chuang, C. C.; Liu, K. H. Appl Soft Com-

put 2008, 8, 55.
32. Yang, Y. J.; Wu, C. Expert Syst Appl 2009, 36, 3034.
33. Lin, Y.; Zhang, J.; Xiao, J. Appl Math Comput 2008, 205, 677.
34. Duan, H. B.; Zhang, X. Y.; Wu, J.; Ma, G. J. J Bionic Eng 2009,

6, 161.

3100 LI AND LIU

Journal of Applied Polymer Science DOI 10.1002/app


